Specific Role of Endomucin in Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Internalization and Function

Zhengping Hu* 1,2, Issahy Cano* 1,2, Magali Saint-Geniez 1,2, Eric Ng 1,2, Patricia A. D’Amore 1,2,3

Schepens Eye Research Institute of Massachusetts Eye and Ear1, Departments of Ophthalmology2 and Pathology3, Harvard Medical School, Boston, MA

Endomucin (EMCN) is a type I integral membrane glycoprotein selectively expressed by endothelial cells in venous and capillary. We have previously showed that EMCN knockdown significantly inhibits VEGF165-induced VEGFR2 internalization and endothelial cell migration, proliferation, and tube formation. The goal of this study is to further define the specificity of EMCN for the VEGF/VEGFR2 system by determining the role of EMCN in VEGF121-induced VEGFR2 activation and migration, VEGF165-induced VEGFR1 internalization, as well as fibroblast growth factor (FGF)-induced cell migration and receptor internalization. EMCN was knocked down in human retinal endothelial cells (HRECs) using siEMCN, with non-targeting siRNA as a control. siEMCN significantly reduced EMCN protein levels compared to the non-targeting siRNA group by 95% (P<0.05). Endothelial cells (EC) migration was assessed in a scratch wound healing assay. VEGF165, VEGF121 and FGF stimulation significantly increased HRECs wound closure compared to control (1 ±0.02 vs. 1.15 ± 0.02, p=0.004; 1 ± 0.02 vs. 1.18 ± 0.03, p<0.0001; 1 ± 0.03 vs. 1.25 ± 0.04, p<0.0001; n>3 for all groups). EMCN knockdown prevented HRECs migration induced by VEGF165 (1 ±0.03 vs. 1.04 ±0.03, p=0.9, n=3) and VEGF121 (1 ±0.03 vs. 1.07 ±0.02, p>0.05, n=3), but not FGF induced migration (1 ±0.03 vs. 1.18 ± 0.05, p<0.0001, n=6), compared to control. Receptor internalization was examined by cell surface biotinylation assay and quantified by Western blot. EMCN depletion prevented VEGF-165 induced VEGFR2 internalization (0.73 ± 0.32 vs. 0.71 ± 0.29, p=0.74, n=7) but did not impact VEGFR1 (1.50 ± 0.12 vs. 0.73 ± 0.11, p<0.001, n=6) or FGF-induced FGFR1 internalization (1.03 ± 0.16 vs. 0.73 ± 0.12, p<0.05, n=7). We conclude that EMCN is essential for VEGF165- and VEGF121-induced EC migration and VEGFR2 internalization. However, EMCN does not play a significant role in VEGFR1 internalization or FGF-induced internalization and endothelial cells migration. Our data indicate a specific role for EMCN in the VEGF/VEGFR2 system.